KCNE1 remodels the voltage sensor of Kv7.1 to modulate channel function.

نویسندگان

  • Dick Wu
  • Hua Pan
  • Kelli Delaloye
  • Jianmin Cui
چکیده

The KCNE1 auxiliary subunit coassembles with the Kv7.1 channel and modulates its properties to generate the cardiac I(Ks) current. Recent biophysical evidence suggests that KCNE1 interacts with the voltage-sensing domain (VSD) of Kv7.1. To investigate the mechanism of how KCNE1 affects the VSD to alter the voltage dependence of channel activation, we perturbed the VSD of Kv7.1 by mutagenesis and chemical modification in the absence and presence of KCNE1. Mutagenesis of S4 in Kv7.1 indicates that basic residues in the N-terminal half (S4-N) and C-terminal half (S4-C) of S4 are important for stabilizing the resting and activated states of the channel, respectively. KCNE1 disrupts electrostatic interactions involving S4-C, specifically with the lower conserved glutamate in S2 (Glu(170) or E2). Likewise, Trp scanning of S4 shows that mutations to a cluster of residues in S4-C eliminate current in the presence of KCNE1. In addition, KCNE1 affects S4-N by enhancing MTS accessibility to the top of the VSD. Consistent with the structure of Kv channels and previous studies on the KCNE1-Kv7.1 interaction, these results suggest that KCNE1 alters the interactions of S4 residues with the surrounding protein environment, possibly by changing the protein packing around S4, thereby affecting the voltage dependence of Kv7.1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How does KCNE1 regulate the Kv7.1 potassium channel? Model-structure, mutations, and dynamics of the Kv7.1-KCNE1 complex.

The voltage-gated potassium channel Kv7.1 and its auxiliary subunit KCNE1 are expressed in the heart and give rise to the major repolarization current. The interaction of Kv7.1 with the single transmembrane helix of KCNE1 considerably slows channel activation and deactivation, raises single-channel conductance, and prevents slow voltage-dependent inactivation. We built a Kv7.1-KCNE1 model-struc...

متن کامل

KCNE1 Constrains the Voltage Sensor of Kv7.1 K+ Channels

Kv7 potassium channels whose mutations cause cardiovascular and neurological disorders are members of the superfamily of voltage-gated K(+) channels, comprising a central pore enclosed by four voltage-sensing domains (VSDs) and sharing a homologous S4 sensor sequence. The Kv7.1 pore-forming subunit can interact with various KCNE auxiliary subunits to form K(+) channels with very different gatin...

متن کامل

Marine n-3 PUFAs modulate IKs gating, channel expression, and location in membrane microdomains.

AIMS Polyunsaturated fatty n-3 acids (PUFAs) have been reported to exhibit antiarrhythmic properties. However, the mechanisms of action remain unclear. We studied the electrophysiological effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on IKs, and on the expression and location of Kv7.1 and KCNE1. METHODS AND RESULTS Experiments were performed using patch-clamp, western ...

متن کامل

Intracellular domains interactions and gated motions of I(KS) potassium channel subunits.

Voltage-gated K(+) channels co-assemble with auxiliary beta subunits to form macromolecular complexes. In heart, assembly of Kv7.1 pore-forming subunits with KCNE1 beta subunits generates the repolarizing K(+) current I(KS). However, the detailed nature of their interface remains unknown. Mutations in either Kv7.1 or KCNE1 produce the life-threatening long or short QT syndromes. Here, we studie...

متن کامل

Klotho

The Klotho gene codes for a type-i membrane protein that exists in two forms—as a transmembrane protein and as a secreted protein. Particularly the secreted form of Klotho suppresses oxidative stress and growth factor signaling and regulates ion channels and transporters. it was reported that Klotho overexpression suppresses insulin/iGF-1 signaling. This signaling pathway was indicated as a cen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 99 11  شماره 

صفحات  -

تاریخ انتشار 2010